The marginaleffects
package for R
and Python
offers a single point of entry to easily interpret the results of over 100 classes of models, using a simple and consistent user interface. Its benefits include:
- Powerful: It can compute and plot predictions; comparisons (contrasts, risk ratios, etc.); slopes; and conduct hypothesis and equivalence tests for over 100 different classes of models in
R
. - Simple: All functions share a simple and unified interface.
- Documented: Each function is thoroughly documented with abundant examples. The Marginal Effects Zoo website includes 20,000+ words of vignettes and case studies.
- Efficient: Some operations can be up to 1000 times faster and use 30 times less memory than with the
margins
package.
- Valid: When possible, numerical results are checked against alternative software like
Stata
or otherR
packages. - Thin: The
R
package requires relatively few dependencies. - Standards-compliant:
marginaleffects
follows “tidy” principles and returns simple data frames that work with all standardR
functions. The outputs are easy to program with and feed to other packages likeggplot2
ormodelsummary
. - Extensible: Adding support for new models is very easy, often requiring less than 10 lines of new code. Please submit feature requests on Github.
- Active development: Bugs are fixed promptly.
To cite marginaleffects
in publications please use:
Arel-Bundock V, Greifer N, Heiss A (Forthcoming). “How to Interpret Statistical Models Using marginaleffects in R and Python.” Journal of Statistical Software.
A BibTeX entry for LaTeX users is:
@Article{,
title = {How to Interpret Statistical Models Using {marginaleffects} in {R} and {Python}},
author = {Vincent Arel-Bundock and Noah Greifer and Andrew Heiss},
year = {Forthcoming},
journal = {Journal of Statistical Software}, }