Skip to contents

This function controls the text which is printed to the console when one of the core marginalefffects functions is called and the object is returned: predictions(), comparisons(), slopes(), marginal_means(), hypotheses(), avg_predictions(), avg_comparisons(), avg_slopes().

All of those functions return standard data frames. Columns can be extracted by name, predictions(model)$estimate, and all the usual data manipulation functions work out-of-the-box: colnames(), head(), subset(), dplyr::filter(), dplyr::arrange(), etc.

Some of the data columns are not printed by default. You can disable pretty printing and print the full results as a standard data frame using the style argument or by applying as.data.frame() on the object. See examples below.

Usage

# S3 method for marginaleffects
print(
  x,
  digits = getOption("marginaleffects_print_digits", default = 3),
  p_eps = getOption("marginaleffects_print_p_eps", default = 0.001),
  topn = getOption("marginaleffects_print_topn", default = 5),
  nrows = getOption("marginaleffects_print_nrows", default = 30),
  ncols = getOption("marginaleffects_print_ncols", default = 30),
  style = getOption("marginaleffects_print_style", default = "summary"),
  ...
)

Arguments

x

An object produced by one of the marginaleffects package functions.

digits

The number of digits to display.

p_eps

p values smaller than this number are printed in "<0.001" style.

topn

The number of rows to be printed from the beginning and end of tables with more than nrows rows.

nrows

The number of rows which will be printed before truncation.

ncols

The maximum number of column names to display at the bottom of the printed output.

style

"summary" or "data.frame"

...

Other arguments are currently ignored.

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp + am + factor(gear), data = mtcars)
p <- predictions(mod, by = c("am", "gear"))
p
#> 
#>  am gear Estimate Std. Error    z Pr(>|z|) 2.5 % 97.5 %
#>   1    4     26.3      1.039 25.3   <0.001  24.2   28.3
#>   0    3     16.1      0.759 21.2   <0.001  14.6   17.6
#>   0    4     21.0      1.470 14.3   <0.001  18.2   23.9
#>   1    5     21.4      1.315 16.3   <0.001  18.8   24.0
#> 
#> Columns: am, gear, estimate, std.error, statistic, p.value, conf.low, conf.high 
#> 

subset(p, am == 1)
#> 
#>  Estimate Std. Error    z Pr(>|z|) CI low CI high
#>      26.3       1.04 25.3   <0.001   24.2    28.3
#>      21.4       1.31 16.3   <0.001   18.8    24.0
#> 
#> Columns: am, gear, estimate, std.error, statistic, p.value, conf.low, conf.high 
#> 

print(p, style = "data.frame")
#>   am gear estimate std.error statistic       p.value conf.low conf.high
#> 1  1    4 26.27500 1.0392746  25.28206 5.032214e-141 24.23806  28.31194
#> 2  0    3 16.10667 0.7589789  21.22150 6.047008e-100 14.61910  17.59424
#> 3  0    4 21.05000 1.4697563  14.32210  1.592320e-46 18.16933  23.93067
#> 4  1    5 21.38000 1.3145900  16.26363  1.788333e-59 18.80345  23.95655

data.frame(p)
#>   am gear estimate std.error statistic       p.value conf.low conf.high
#> 1  1    4 26.27500 1.0392746  25.28206 5.032214e-141 24.23806  28.31194
#> 2  0    3 16.10667 0.7589789  21.22150 6.047008e-100 14.61910  17.59424
#> 3  0    4 21.05000 1.4697563  14.32210  1.592320e-46 18.16933  23.93067
#> 4  1    5 21.38000 1.3145900  16.26363  1.788333e-59 18.80345  23.95655