Installation
Install the latest CRAN release:
install.packages("marginaleffects")
Install the development version:
install.packages(
c("marginaleffects", "insight"),
repos = c("https://vincentarelbundock.r-universe.dev", "https://easystats.r-universe.dev"))
Restart R
completely before moving on.
Estimands: Predictions, Comparisons, and Slopes
The marginaleffects
package allows R
users to compute and plot three principal quantities of interest: (1) predictions, (2) comparisons, and (3) slopes. In addition, the package includes a convenience function to compute a fourth estimand, “marginal means”, which is a special case of averaged predictions. marginaleffects
can also average (or “marginalize”) unit-level (or “conditional”) estimates of all those quantities, and conduct hypothesis tests on them.
The outcome predicted by a fitted model on a specified scale for a given combination of values of the predictor variables, such as their observed values, their means, or factor levels. a.k.a. Fitted values, adjusted predictions.
predictions()
,avg_predictions()
,plot_predictions()
.
Compare the predictions made by a model for different regressor values (e.g., college graduates vs. others): contrasts, differences, risk ratios, odds, etc.
comparisons()
,avg_comparisons()
,plot_comparisons()
.
Partial derivative of the regression equation with respect to a regressor of interest. a.k.a. Marginal effects, trends.
slopes()
,avg_slopes()
,plot_slopes()
.
Predictions of a model, averaged across a “reference grid” of categorical predictors.
marginalmeans()
.
Predictions, comparisons, and slopes are fundamentally unit-level (or “conditional”) quantities. Except in the simplest linear case, estimates will typically vary based on the values of all the regressors in a model. Each of the observations in a dataset is thus associated with its own prediction, comparison, and slope estimates. Below, we will see that it can be useful to marginalize (or “average over”) unit-level estimates to report an “average prediction”, “average comparison”, or “average slope”.
One ambiguous aspect of the definitions above is that the word “marginal” comes up in two different and opposite ways:
- In “marginal effects,” we refer to the effect of a tiny (marginal) change in the regressor on the outcome. This is a slope, or derivative.
- In “marginal means,” we refer to the process of marginalizing across rows of a prediction grid. This is an average, or integral.
On this website and in this package, we reserve the expression “marginal effect” to mean a “slope” or “partial derivative”.
The marginaleffects
package includes functions to estimate, average, plot, and summarize all of the estimands described above. The objects produced by marginaleffects
are “tidy”: they produce simple data frames in “long” format. They are also “standards-compliant” and work seamlessly with standard functions like summary()
, plot()
, tidy()
, and glance()
, as well with external packages like modelsummary
or ggplot2
.
We now apply marginaleffects
functions to compute each of the estimands described above. First, we fit a linear regression model with multiplicative interactions:
library(marginaleffects)
mod <- lm(mpg ~ hp * wt * am, data = mtcars)
Then, we call the predictions()
function. As noted above, predictions are unit-level estimates, so there is one specific prediction per observation. By default, the predictions()
function makes one prediction per observation in the dataset that was used to fit the original model. Since mtcars
has 32 rows, the predictions()
outcome also has 32 rows:
pre <- predictions(mod)
nrow(mtcars)
## [1] 32
nrow(pre)
## [1] 32
pre
##
## Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## 22.49 0.8841 25.435 < 2.22e-16 20.756 24.22
## 20.80 1.1942 17.419 < 2.22e-16 18.461 23.14
## 25.26 0.7085 35.658 < 2.22e-16 23.876 26.65
## 20.26 0.7045 28.753 < 2.22e-16 18.875 21.64
## 17.00 0.7119 23.878 < 2.22e-16 15.603 18.39
## --- 22 rows omitted. See ?avg_predictions and ?print.marginaleffects ---
## 29.59 1.8735 15.795 < 2.22e-16 25.921 33.27
## 15.90 1.3107 12.128 < 2.22e-16 13.327 18.47
## 19.41 1.1454 16.947 < 2.22e-16 17.167 21.66
## 14.79 2.0174 7.330 2.2943e-13 10.834 18.74
## 21.46 1.0719 20.022 < 2.22e-16 19.361 23.56
##
## Prediction type: response
## Columns: rowid, type, estimate, std.error, statistic, p.value, conf.low, conf.high, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
Now, we use the comparisons()
function to compute the different in predicted outcome when each of the predictors is incremented by 1 unit (one predictor at a time, holding all others constant). Once again, comparisons are unit-level quantities. And since there are 3 predictors in the model and our data has 32 rows, we obtain 96 comparisons:
cmp <- comparisons(mod)
nrow(cmp)
## [1] 96
cmp
##
## Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## hp +1 -0.036906 0.01850 -1.9947 0.04607449 -0.07317 -0.0006429
## hp +1 -0.028689 0.01563 -1.8357 0.06640282 -0.05932 0.0019422
## hp +1 -0.046572 0.02259 -2.0619 0.03922051 -0.09084 -0.0023017
## hp +1 -0.042271 0.01328 -3.1824 0.00146054 -0.06831 -0.0162375
## hp +1 -0.039018 0.01341 -2.9095 0.00362022 -0.06530 -0.0127338
## --- 86 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
## am 1 - 0 4.080730 3.93510 1.0370 0.29973237 -3.63193 11.7933866
## am 1 - 0 2.106353 2.28920 0.9201 0.35750670 -2.38040 6.5931031
## am 1 - 0 0.895066 1.64419 0.5444 0.58617945 -2.32749 4.1176203
## am 1 - 0 4.027219 3.24024 1.2429 0.21391295 -2.32353 10.3779686
## am 1 - 0 -0.236915 1.58642 -0.1493 0.88128622 -3.34625 2.8724165
##
## Prediction type: response
## Columns: rowid, type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb, eps
The comparisons()
function allows customized queries. For example, what happens to the predicted outcome when the hp
variable increases from 100 to 120?
comparisons(mod, variables = list(hp = c(120, 100)))
##
## Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## hp 120 - 100 -0.7381 0.3700 -1.9947 0.0460745 -1.4634 -0.012857
## hp 120 - 100 -0.5738 0.3126 -1.8357 0.0664028 -1.1864 0.038843
## hp 120 - 100 -0.9314 0.4517 -2.0619 0.0392205 -1.8168 -0.046033
## hp 120 - 100 -0.8454 0.2657 -3.1824 0.0014605 -1.3661 -0.324750
## hp 120 - 100 -0.7804 0.2682 -2.9095 0.0036202 -1.3061 -0.254677
## --- 22 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
## hp 120 - 100 -1.4515 0.7052 -2.0581 0.0395803 -2.8337 -0.069212
## hp 120 - 100 -0.3837 0.2698 -1.4221 0.1549843 -0.9125 0.145101
## hp 120 - 100 -0.6415 0.3345 -1.9178 0.0551304 -1.2970 0.014087
## hp 120 - 100 -0.1259 0.2722 -0.4627 0.6435969 -0.6594 0.407510
## hp 120 - 100 -0.6350 0.3323 -1.9112 0.0559829 -1.2862 0.016213
##
## Prediction type: response
## Columns: rowid, type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb, eps
What happens to the predicted outcome when the wt
variable increases by 1 standard deviation about its mean?
comparisons(mod, variables = list(hp = "sd"))
##
## Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## hp (x + sd/2) - (x - sd/2) -2.5304 1.2685 -1.9947 0.0460745 -5.017 -0.04408
## hp (x + sd/2) - (x - sd/2) -1.9670 1.0715 -1.8357 0.0664028 -4.067 0.13316
## hp (x + sd/2) - (x - sd/2) -3.1931 1.5486 -2.0619 0.0392205 -6.228 -0.15781
## hp (x + sd/2) - (x - sd/2) -2.8982 0.9107 -3.1824 0.0014605 -4.683 -1.11329
## hp (x + sd/2) - (x - sd/2) -2.6752 0.9195 -2.9095 0.0036202 -4.477 -0.87307
## --- 22 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
## hp (x + sd/2) - (x - sd/2) -4.9758 2.4177 -2.0581 0.0395803 -9.714 -0.23727
## hp (x + sd/2) - (x - sd/2) -1.3153 0.9249 -1.4221 0.1549843 -3.128 0.49743
## hp (x + sd/2) - (x - sd/2) -2.1990 1.1466 -1.9178 0.0551304 -4.446 0.04829
## hp (x + sd/2) - (x - sd/2) -0.4317 0.9330 -0.4627 0.6435969 -2.260 1.39700
## hp (x + sd/2) - (x - sd/2) -2.1769 1.1390 -1.9112 0.0559829 -4.409 0.05558
##
## Prediction type: response
## Columns: rowid, type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb, eps
The comparisons()
function also allows users to specify arbitrary functions of predictions, with the transform_pre
argument. For example, what is the average ratio between predicted Miles per Gallon after an increase of 50 units in Horsepower?
comparisons(
mod,
variables = list(hp = 50),
transform_pre = "ratioavg")
##
## Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## hp mean(+50) 0.9095 0.02895 31.42 < 2.22e-16 0.8528 0.9663
##
## Prediction type: response
## Columns: type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo
See the Comparisons vignette for detailed explanations and more options.
The slopes()
function allows us to compute the partial derivative of the outcome equation with respect to each of the predictors. Once again, we obtain a data frame with 96 rows:
## [1] 96
mfx
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## hp -0.036906 0.01850 -1.9947 0.04607449 -0.07317 -0.0006429
## hp -0.028689 0.01563 -1.8357 0.06640283 -0.05932 0.0019422
## hp -0.046572 0.02259 -2.0619 0.03922051 -0.09084 -0.0023017
## hp -0.042271 0.01328 -3.1824 0.00146054 -0.06831 -0.0162375
## hp -0.039018 0.01341 -2.9095 0.00362022 -0.06530 -0.0127338
## --- 86 rows omitted. See ?avg_slopes and ?print.marginaleffects ---
## am 4.080730 3.93510 1.0370 0.29973254 -3.63193 11.7933892
## am 2.106353 2.28920 0.9201 0.35750651 -2.38039 6.5931013
## am 0.895066 1.64419 0.5444 0.58617934 -2.32749 4.1176193
## am 4.027219 3.24024 1.2429 0.21391321 -2.32353 10.3779723
## am -0.236915 1.58642 -0.1493 0.88128623 -3.34625 2.8724169
##
## Prediction type: response
## Columns: rowid, type, term, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb, eps
Grid
Predictions, comparisons, and slopes are typically “conditional” quantities which depend on the values of all the predictors in the model. By default, marginaleffects
functions estimate quantities of interest for empirical distribution of the data (i.e., for each row of the original dataset). However, users can specify the exact values of the predictors they want to investigate by using the newdata
argument.
newdata
accepts data frames, shortcut strings, or a call to the datagrid()
function. For example, to compute the predicted outcome for a hypothetical car with all predictors equal to the sample mean or median, we can do:
predictions(mod, newdata = "mean")
##
## Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## 18.37 0.6799 27.02 < 2.22e-16 17.04 19.7
##
## Prediction type: response
## Columns: rowid, type, estimate, std.error, statistic, p.value, conf.low, conf.high, mpg, hp, wt, am
predictions(mod, newdata = "median")
##
## Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## 19.37 0.6464 29.97 < 2.22e-16 18.11 20.64
##
## Prediction type: response
## Columns: rowid, type, estimate, std.error, statistic, p.value, conf.low, conf.high, mpg, hp, wt, am
The datagrid
function gives us a powerful way to define a grid of predictors. All the variables not mentioned explicitly in datagrid()
are fixed to their mean or mode:
predictions(
mod,
newdata = datagrid(
am = c(0, 1),
wt = range))
##
## Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % am wt
## 23.259 2.706 8.596 < 2.22e-16 17.956 28.56 0 1.513
## 12.793 2.978 4.295 1.7459e-05 6.955 18.63 0 5.424
## 27.148 2.852 9.520 < 2.22e-16 21.559 32.74 1 1.513
## 5.902 5.815 1.015 0.31013 -5.495 17.30 1 5.424
##
## Prediction type: response
## Columns: rowid, type, estimate, std.error, statistic, p.value, conf.low, conf.high, mpg, hp, am, wt
The same mechanism is available in comparisons()
and slopes()
. To estimate the partial derivative of mpg
with respect to wt
, when am
is equal to 0 and 1, while other predictors are held at their means:
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % am
## wt -2.676 1.419 -1.886 0.059355 -5.458 0.1056 0
## wt -5.432 2.152 -2.524 0.011605 -9.651 -1.2139 1
##
## Prediction type: response
## Columns: rowid, type, term, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, mpg, hp, wt, am, eps
We can also plot how predictions, comparisons, or slopes change across different values of the predictors using three powerful plotting functions:
-
plot_predictions
: Conditional Adjusted Predictions -
plot_comparisons
: Conditional Comparisons -
plot_slopes
: Conditional Marginal Effects
For example, this plot shows the outcomes predicted by our model for different values of the wt
and am
variables:
plot_predictions(mod, condition = list("hp", "wt" = "threenum", "am"))
This plot shows how the derivative of mpg
with respect to am
varies as a function of wt
and hp
:
plot_slopes(mod, effect = "am", condition = list("hp", "wt" = "minmax"))
See this vignette for more information: Plots, interactions, predictions, contrasts, and slopes
Averaging
Since predictions, comparisons, and slopes are conditional quantities, they can be a bit unwieldy. Often, it can be useful to report a one-number summary instead of one estimate per observation. Instead of presenting “conditional” estimates, some methodologists recommend reporting “marginal” estimates, that is, an average of unit-level estimates.
(This use of the word “marginal” as “averaging” should not be confused with the term “marginal effect” which, in the econometrics tradition, corresponds to a partial derivative, or the effect of a “small/marginal” change.)
To marginalize (average over) our unit-level estimates, we can use the by
argument or the one of the convenience functions: avg_predictions()
, avg_comparisons()
, or avg_slopes()
. For example, both of these commands give us the same result: the average predicted outcome in the mtcars
dataset:
avg_predictions(mod)
##
## Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## 20.09 0.3904 51.46 < 2.22e-16 19.33 20.86
##
## Prediction type: response
## Columns: type, estimate, std.error, statistic, p.value, conf.low, conf.high
This is equivalent to manual computation by:
## [1] 20.09062
The main marginaleffects
functions all include a by
argument, which allows us to marginalize within sub-groups of the data. For example,
avg_comparisons(mod, by = "am")
##
## Term Contrast am Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## hp mean(+1) 1 -0.04364 0.02129 -2.0498 0.0403865 -0.08537 -0.001912
## hp mean(+1) 0 -0.03426 0.01586 -2.1598 0.0307863 -0.06536 -0.003171
## wt mean(+1) 1 -6.07176 1.97621 -3.0724 0.0021233 -9.94506 -2.198458
## wt mean(+1) 0 -2.47990 1.23163 -2.0135 0.0440605 -4.89385 -0.065954
## am mean(1) - mean(0) 1 1.90290 2.30863 0.8243 0.4097951 -2.62193 6.427728
## am mean(1) - mean(0) 0 -1.38301 2.52499 -0.5477 0.5838789 -6.33191 3.565888
##
## Prediction type: response
## Columns: type, term, contrast, am, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo
Marginal Means are a special case of predictions, which are marginalized (or averaged) across a balanced grid of categorical predictors. To illustrate, we estimate a new model with categorical predictors:
dat <- mtcars
dat$am <- as.logical(dat$am)
dat$cyl <- as.factor(dat$cyl)
mod_cat <- lm(mpg ~ am + cyl + hp, data = dat)
We can compute marginal means manually using the functions already described:
avg_predictions(
mod_cat,
newdata = datagrid(cyl = unique, am = unique),
by = "am")
##
## am Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## TRUE 22.48 0.8343 26.94 < 2.22e-16 20.84 24.11
## FALSE 18.32 0.7854 23.33 < 2.22e-16 16.78 19.86
##
## Prediction type: response
## Columns: type, am, estimate, std.error, statistic, p.value, conf.low, conf.high
For convenience, the marginaleffects
package also includes a marginal_means()
function:
marginal_means(mod_cat, variables = "am")
##
## Term Value Mean Std. Error z Pr(>|z|) 2.5 % 97.5 %
## am FALSE 18.32 0.7854 23.33 < 2.22e-16 16.78 19.86
## am TRUE 22.48 0.8343 26.94 < 2.22e-16 20.84 24.11
##
## Prediction type: response
## Results averaged over levels of: am, cyl
## Columns: type, term, value, am, estimate, std.error, statistic, p.value, conf.low, conf.high
The Marginal Means vignette offers more detail.
Hypothesis and equivalence tests
The hypotheses()
function and the hypothesis
argument can be used to conduct linear and non-linear hypothesis tests on model coefficients, or on any of the quantities computed by the functions introduced above.
Consider this model:
## (Intercept) qsec drat qsec:drat
## 12.3371987 -1.0241183 -3.4371461 0.5973153
Can we reject the null hypothesis that the drat
coefficient is 2 times the size of the qsec
coefficient?
hypotheses(mod, "drat = 2 * qsec")
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## drat = 2 * qsec -1.389 10.78 -0.1289 0.89744 -22.51 19.73
##
## Prediction type:
## Columns: term, estimate, std.error, statistic, p.value, conf.low, conf.high
We can ask the same question but refer to parameters by position, with indices b1
, b2
, b3
, etc.:
hypotheses(mod, "b3 = 2 * b2")
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## b3 = 2 * b2 -1.389 10.78 -0.1289 0.89744 -22.51 19.73
##
## Prediction type:
## Columns: term, estimate, std.error, statistic, p.value, conf.low, conf.high
The main functions in marginaleffects
all have a hypothesis
argument, which means that we can do complex model testing. For example, consider two slope estimates:
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % qsec
## drat 5.224 3.791 1.378 0.168218 -2.2065 12.65 14.5
## drat 10.241 5.161 1.984 0.047233 0.1251 20.36 22.9
##
## Prediction type: response
## Columns: rowid, type, term, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, mpg, drat, qsec, eps
Are these two slopes significantly different from one another? To test this, we can use the hypothesis
argument:
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
## b1=b2 -5.017 8.519 -0.5889 0.5559 -21.72 11.68
##
## Prediction type: response
## Columns: type, term, estimate, std.error, statistic, p.value, conf.low, conf.high
Now, imagine that for theoretical (or substantive or clinical) reasons, we only care about slopes larger than 2. We can use the hypotheses()
function to conduct an equivalence test:
avg_slopes(mod) |> hypotheses(equivalence = c(-2, 2))
##
## Term Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % p (Inf) p (Sup) p (Eq)
## qsec 1.124 0.4331 2.595 0.0094487 0.2752 1.973 2.740286e-13 0.02158502 0.02158502
## drat 7.224 1.3652 5.292 1.2122e-07 4.5484 9.900 7.062313e-12 0.99993505 0.99993505
##
## Prediction type: response
## Columns: type, term, estimate, std.error, statistic, p.value, conf.low, conf.high, statistic.noninf, statistic.nonsup, p.value.noninf, p.value.nonsup, p.value.equiv
See the Hypothesis Tests and Custom Contrasts vignette for background, details, and for instructions on how to conduct hypothesis tests in more complex situations.
More!
There is much more you can do with marginaleffects
. Return to the Table of Contents to read the vignettes, learn how to report marginal effects in nice tables with the modelsummary
package, how to define your own prediction “grid”, and much more. ****