Bootstrap and Simulation-Based Inference (Experimental)
Source:vignettes/bootstrap.Rmd
bootstrap.Rmd
marginaleffects
offers an experimental
inferences()
function to compute uncertainty estimates
using the bootstrap and simulation-based inference.
WARNING: The inferences()
function is experimental. It
may be renamed, the user interface may change, or the functionality may
migrate to arguments in other marginaleffects
functions.
Consider a simple model:
library(marginaleffects)
mod <- lm(Sepal.Length ~ Petal.Width * Petal.Length + factor(Species), data = iris)
We will compute uncertainty estimates around the output of
comparisons()
, but note that the same approach works with
the predictions()
and slopes()
functions as
well.
Delta method
The default strategy to compute standard errors and confidence intervals is the delta method. This is what we obtain by calling:
avg_comparisons(mod, by = "Species", variables = "Petal.Width")
#>
#> Term Contrast Species Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
#> Petal.Width mean(+1) setosa -0.1103 0.285 -0.387 0.699 -0.669 0.449
#> Petal.Width mean(+1) versicolor -0.0201 0.160 -0.125 0.900 -0.334 0.293
#> Petal.Width mean(+1) virginica 0.0216 0.169 0.128 0.898 -0.309 0.353
#>
#> Columns: term, contrast, Species, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo
Since this is the default method, we obtain the same results if we
add the inferences()
call in the chain:
avg_comparisons(mod, by = "Species", variables = "Petal.Width") |>
inferences(method = "delta")
#>
#> Term Contrast Species Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 %
#> Petal.Width mean(+1) setosa -0.1103 0.285 -0.387 0.699 -0.669 0.449
#> Petal.Width mean(+1) versicolor -0.0201 0.160 -0.125 0.900 -0.334 0.293
#> Petal.Width mean(+1) virginica 0.0216 0.169 0.128 0.898 -0.309 0.353
#>
#> Columns: term, contrast, Species, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo
Bootstrap
marginaleffects
supports three bootstrap frameworks in
R
: the well-established boot
package, the
newer rsample
package, and the so-called “bayesian
bootstrap” in fwb
.
boot
avg_comparisons(mod, by = "Species", variables = "Petal.Width") |>
inferences(method = "boot")
#>
#> Term Contrast Species Estimate Std. Error 2.5 % 97.5 %
#> Petal.Width mean(+1) setosa -0.1103 0.263 -0.636 0.418
#> Petal.Width mean(+1) versicolor -0.0201 0.162 -0.358 0.307
#> Petal.Width mean(+1) virginica 0.0216 0.186 -0.350 0.372
#>
#> Columns: term, contrast, Species, estimate, predicted, predicted_hi, predicted_lo, std.error, conf.low, conf.high
All unknown arguments that we feed to inferences()
are
pushed forward to boot::boot()
:
est <- avg_comparisons(mod, by = "Species", variables = "Petal.Width") |>
inferences(method = "boot", sim = "balanced", R = 500, conf_type = "bca")
est
#>
#> Term Contrast Species Estimate Std. Error 2.5 % 97.5 %
#> Petal.Width mean(+1) setosa -0.1103 0.273 -0.722 0.416
#> Petal.Width mean(+1) versicolor -0.0201 0.166 -0.338 0.305
#> Petal.Width mean(+1) virginica 0.0216 0.188 -0.334 0.426
#>
#> Columns: term, contrast, Species, estimate, predicted, predicted_hi, predicted_lo, std.error, conf.low, conf.high
We can extract the original boot
object from an
attribute:
attr(est, "inferences")
#>
#> BALANCED BOOTSTRAP
#>
#>
#> Call:
#> bootstrap_boot(model = model, FUN = FUN, newdata = ..1, vcov = ..2,
#> variables = ..3, type = ..4, by = ..5, conf_level = ..6,
#> comparison = ..7, transform = ..8, wts = ..9, hypothesis = ..10,
#> eps = ..11)
#>
#>
#> Bootstrap Statistics :
#> original bias std. error
#> t1* -0.11025325 0.0016255817 0.2731068
#> t2* -0.02006005 0.0010577310 0.1658978
#> t3* 0.02158742 0.0007955211 0.1883568
Or we can extract the individual draws with the
posterior_draws()
function:
posterior_draws(est) |> head()
#> drawid draw term contrast Species estimate predicted predicted_hi predicted_lo std.error conf.low conf.high
#> 1 1 -0.17362042 Petal.Width mean(+1) setosa -0.11025325 4.957514 4.901389 5.013640 0.2731068 -0.7221460 0.4159604
#> 2 1 0.21983670 Petal.Width mean(+1) versicolor -0.02006005 6.327949 6.325011 6.330887 0.1658978 -0.3379984 0.3052733
#> 3 1 0.40151883 Petal.Width mean(+1) virginica 0.02158742 7.015513 7.033528 6.997499 0.1883568 -0.3340813 0.4256430
#> 4 2 0.06297702 Petal.Width mean(+1) setosa -0.11025325 4.957514 4.901389 5.013640 0.2731068 -0.7221460 0.4159604
#> 5 2 0.11957405 Petal.Width mean(+1) versicolor -0.02006005 6.327949 6.325011 6.330887 0.1658978 -0.3379984 0.3052733
#> 6 2 0.14570820 Petal.Width mean(+1) virginica 0.02158742 7.015513 7.033528 6.997499 0.1883568 -0.3340813 0.4256430
posterior_draws(est, shape = "DxP") |> dim()
#> [1] 500 3
rsample
As before, we can pass arguments to
rsample::bootstraps()
through inferences()
.
For example, for stratified resampling:
est <- avg_comparisons(mod, by = "Species", variables = "Petal.Width") |>
inferences(method = "rsample", R = 100, strata = "Species")
est
#>
#> Term Contrast Species Estimate 2.5 % 97.5 %
#> Petal.Width mean(+1) setosa -0.1103 -0.703 0.382
#> Petal.Width mean(+1) versicolor -0.0201 -0.253 0.302
#> Petal.Width mean(+1) virginica 0.0216 -0.288 0.385
#>
#> Columns: term, contrast, Species, estimate, predicted, predicted_hi, predicted_lo, conf.low, conf.high
attr(est, "inferences")
#> # Bootstrap sampling using stratification with apparent sample
#> # A tibble: 101 × 3
#> splits id estimates
#> <list> <chr> <list>
#> 1 <split [150/64]> Bootstrap001 <tibble [3 × 7]>
#> 2 <split [150/53]> Bootstrap002 <tibble [3 × 7]>
#> 3 <split [150/57]> Bootstrap003 <tibble [3 × 7]>
#> 4 <split [150/55]> Bootstrap004 <tibble [3 × 7]>
#> 5 <split [150/54]> Bootstrap005 <tibble [3 × 7]>
#> 6 <split [150/54]> Bootstrap006 <tibble [3 × 7]>
#> 7 <split [150/51]> Bootstrap007 <tibble [3 × 7]>
#> 8 <split [150/57]> Bootstrap008 <tibble [3 × 7]>
#> 9 <split [150/60]> Bootstrap009 <tibble [3 × 7]>
#> 10 <split [150/50]> Bootstrap010 <tibble [3 × 7]>
#> # ℹ 91 more rows
Or we can extract the individual draws with the
posterior_draws()
function:
posterior_draws(est) |> head()
#> drawid draw term contrast Species estimate predicted predicted_hi predicted_lo conf.low conf.high
#> 1 1 -0.3102611 Petal.Width mean(+1) setosa -0.11025325 4.957514 4.901389 5.013640 -0.7032414 0.3821446
#> 2 1 0.1065051 Petal.Width mean(+1) versicolor -0.02006005 6.327949 6.325011 6.330887 -0.2530083 0.3024675
#> 3 1 0.2989504 Petal.Width mean(+1) virginica 0.02158742 7.015513 7.033528 6.997499 -0.2882844 0.3848567
#> 4 2 -0.1564778 Petal.Width mean(+1) setosa -0.11025325 4.957514 4.901389 5.013640 -0.7032414 0.3821446
#> 5 2 -0.0142775 Petal.Width mean(+1) versicolor -0.02006005 6.327949 6.325011 6.330887 -0.2530083 0.3024675
#> 6 2 0.0513847 Petal.Width mean(+1) virginica 0.02158742 7.015513 7.033528 6.997499 -0.2882844 0.3848567
posterior_draws(est, shape = "PxD") |> dim()
#> [1] 3 100
Fractional Weighted Bootstrap (aka Bayesian Bootstrap)
The fwb
package implements fractional weighted bootstrap (aka Bayesian
bootstrap):
“fwb implements the fractional weighted bootstrap (FWB), also known as the Bayesian bootstrap, following the treatment by Xu et al. (2020). The FWB involves generating sets of weights from a uniform Dirichlet distribution to be used in estimating statistics of interest, which yields a posterior distribution that can be interpreted in the same way the traditional (resampling-based) bootstrap distribution can be.” -Noah Greifer
The inferences()
function makes it easy to apply this
inference strategy to marginaleffects
objects:
avg_comparisons(mod) |> inferences(method = "fwb")
#>
#> Term Contrast Estimate Std. Error 2.5 % 97.5 %
#> Petal.Width +1 -0.0362 0.159 -0.339 0.274
#> Petal.Length +1 0.8929 0.079 0.742 1.048
#> Species versicolor - setosa -1.4629 0.316 -2.100 -0.863
#> Species virginica - setosa -1.9842 0.372 -2.724 -1.281
#>
#> Columns: term, contrast, estimate, std.error, conf.low, conf.high
Simulation-based inference
This simulation-based strategy to compute confidence intervals was described in Krinsky & Robb (1986) and popularized by King, Tomz, Wittenberg (2000). We proceed in 3 steps:
- Draw
R
sets of simulated coefficients from a multivariate normal distribution with mean equal to the original model’s estimated coefficients and variance equal to the model’s variance-covariance matrix (classical, “HC3”, or other). - Use the
R
sets of coefficients to computeR
sets of estimands: predictions, comparisons, or slopes. - Take quantiles of the resulting distribution of estimands to obtain a confidence interval and the standard deviation of simulated estimates to estimate the standard error.
Here are a few examples:
library(ggplot2)
library(ggdist)
avg_comparisons(mod, by = "Species", variables = "Petal.Width") |>
inferences(method = "simulation")
#>
#> Term Contrast Species Estimate Std. Error 2.5 % 97.5 %
#> Petal.Width mean(+1) setosa -0.1155 0.282 -0.685 0.447
#> Petal.Width mean(+1) versicolor -0.0174 0.163 -0.345 0.296
#> Petal.Width mean(+1) virginica 0.0310 0.172 -0.311 0.351
#>
#> Columns: term, contrast, Species, estimate, std.error, conf.low, conf.high, predicted, predicted_hi, predicted_lo, tmp_idx
Since simulation based inference generates R
estimates
of the quantities of interest, we can treat them similarly to draws from
the posterior distribution in bayesian models. For example, we can
extract draws using the posterior_draws()
function, and
plot their distributions using packages likeggplot2
and
ggdist
:
avg_comparisons(mod, by = "Species", variables = "Petal.Width") |>
inferences(method = "simulation") |>
posterior_draws("rvar") |>
ggplot(aes(y = Species, xdist = rvar)) +
stat_slabinterval()