crime4 | R Documentation |
crime4
Description
Wooldridge Source: From C. Cornwell and W. Trumball (1994), “Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics 76, 360-366. Professor Cornwell kindly provided the data. Data loads lazily.
Usage
data('crime4')
Format
A data.frame with 630 observations on 59 variables:
-
county: county identifier
-
year: 81 to 87
-
crmrte: crimes committed per person
-
prbarr: 'probability' of arrest
-
prbconv: 'probability' of conviction
-
prbpris: 'probability' of prison sentenc
-
avgsen: avg. sentence, days
-
polpc: police per capita
-
density: people per sq. mile
-
taxpc: tax revenue per capita
-
west: =1 if in western N.C.
-
central: =1 if in central N.C.
-
urban: =1 if in SMSA
-
pctmin80: perc. minority, 1980
-
wcon: weekly wage, construction
-
wtuc: wkly wge, trns, util, commun
-
wtrd: wkly wge, whlesle, retail trade
-
wfir: wkly wge, fin, ins, real est
-
wser: wkly wge, service industry
-
wmfg: wkly wge, manufacturing
-
wfed: wkly wge, fed employees
-
wsta: wkly wge, state employees
-
wloc: wkly wge, local gov emps
-
mix: offense mix: face-to-face/other
-
pctymle: percent young male
-
d82: =1 if year == 82
-
d83: =1 if year == 83
-
d84: =1 if year == 84
-
d85: =1 if year == 85
-
d86: =1 if year == 86
-
d87: =1 if year == 87
-
lcrmrte: log(crmrte)
-
lprbarr: log(prbarr)
-
lprbconv: log(prbconv)
-
lprbpris: log(prbpris)
-
lavgsen: log(avgsen)
-
lpolpc: log(polpc)
-
ldensity: log(density)
-
ltaxpc: log(taxpc)
-
lwcon: log(wcon)
-
lwtuc: log(wtuc)
-
lwtrd: log(wtrd)
-
lwfir: log(wfir)
-
lwser: log(wser)
-
lwmfg: log(wmfg)
-
lwfed: log(wfed)
-
lwsta: log(wsta)
-
lwloc: log(wloc)
-
lmix: log(mix)
-
lpctymle: log(pctymle)
-
lpctmin: log(pctmin)
-
clcrmrte: lcrmrte - lcrmrte[_n-1]
-
clprbarr: lprbarr - lprbarr[_n-1]
-
clprbcon: lprbconv - lprbconv[_n-1]
-
clprbpri: lprbpri - lprbpri[t-1]
-
clavgsen: lavgsen - lavgsen[t-1]
-
clpolpc: lpolpc - lpolpc[t-1]
-
cltaxpc: ltaxpc - ltaxpc[t-1]
-
clmix: lmix - lmix[t-1]
Notes
Computer Exercise C16.7 shows that variables that might seem to be good instrumental variable candidates are not always so good, especially after applying a transformation such as differencing across time. You could have the students do an IV analysis for just, say, 1987.
Used in Text: pages 471-472, 479, 504, 580
Source
https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041
Examples
str(crime4)