seizure | R Documentation |
Epiliptic Seizures
Description
The seizure
data frame has 59 rows and 7 columns. The dataset has the
number of epiliptic seizures in each of four two-week intervals, and in a
baseline eight-week inverval, for treatment and control groups with a total
of 59 individuals.
Usage
seizure
Format
This data frame contains the following columns:
- y1
the number of epiliptic seizures in the 1st 2-week interval
- y2
the number of epiliptic seizures in the 2nd 2-week interval
- y3
the number of epiliptic seizures in the 3rd 2-week interval
- y4
the number of epiliptic seizures in the 4th 2-week interval
- trt
an indicator of treatment
- base
the number of epilitic seizures in a baseline 8-week interval
- age
a numeric vector of subject age
Source
Thall, P.F. and Vail S.C. (1990) Some covariance models for longitudinal count data with overdispersion. Biometrics 46: 657–671.
References
Diggle, P.J., Liang, K.Y., and Zeger, S.L. (1994) Analysis of Longitudinal Data. Clarendon Press.
Examples
data(seizure)
## Diggle, Liang, and Zeger (1994) pp166-168, compare Table 8.10
seiz.l <- reshape(seizure,
varying=list(c("base","y1", "y2", "y3", "y4")),
v.names="y", times=0:4, direction="long")
seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),]
seiz.l$t <- ifelse(seiz.l$time == 0, 8, 2)
seiz.l$x <- ifelse(seiz.l$time == 0, 0, 1)
m1 <- geese(y ~ offset(log(t)) + x + trt + x:trt, id = id,
data=seiz.l, corstr="exch", family=poisson)
summary(m1)
m2 <- geese(y ~ offset(log(t)) + x + trt + x:trt, id = id,
data = seiz.l, subset = id!=49,
corstr = "exch", family=poisson)
summary(m2)
## Thall and Vail (1990)
seiz.l <- reshape(seizure, varying=list(c("y1","y2","y3","y4")),
v.names="y", direction="long")
seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),]
seiz.l$lbase <- log(seiz.l$base / 4)
seiz.l$lage <- log(seiz.l$age)
seiz.l$v4 <- ifelse(seiz.l$time == 4, 1, 0)
m3 <- geese(y ~ lbase + trt + lbase:trt + lage + v4,
sformula = ~ as.factor(time) - 1, id = id,
data = seiz.l, corstr = "exchangeable", family=poisson)
## compare to Model 13 in Table 4, noticeable difference
summary(m3)
## set up a design matrix for the correlation
z <- model.matrix(~ age, data = seizure) # data is not seiz.l
## just to illustrate the scale link and correlation link
m4 <- geese(y ~ lbase + trt + lbase:trt + lage + v4,
sformula = ~ as.factor(time)-1, id = id,
data = seiz.l, corstr = "ar1", family = poisson,
zcor = z, cor.link = "fisherz", sca.link = "log")
summary(m4)