litters | R Documentation |
Mouse Litters
Description
Data on the body and brain weights of 20 mice, together with the size of the litter. Two mice were taken from each litter size.
Usage
litters
Format
This data frame contains the following columns:
- lsize
litter size
- bodywt
body weight
- brainwt
brain weight
Source
Wainright P, Pelkman C and Wahlsten D 1989. The quantitative relationship between nutritional effects on preweaning growth and behavioral development in mice. Developmental Psychobiology 22: 183-193.
Examples
print("Multiple Regression - Example 6.2")
pairs(litters, labels=c("lsize\n\n(litter size)", "bodywt\n\n(Body Weight)",
"brainwt\n\n(Brain Weight)"))
# pairs(litters) gives a scatterplot matrix with less adequate labeling
mice1.lm <- lm(brainwt ~ lsize, data = litters) # Regress on lsize
mice2.lm <- lm(brainwt ~ bodywt, data = litters) #Regress on bodywt
mice12.lm <- lm(brainwt ~ lsize + bodywt, data = litters) # Regress on lsize & bodywt
summary(mice1.lm)$coef # Similarly for other coefficients.
# results are consistent with the biological concept of brain sparing
pause()
hat(model.matrix(mice12.lm)) # hat diagonal
pause()
plot(lm.influence(mice12.lm)$hat, residuals(mice12.lm))
print("Diagnostics - Example 6.3")
mice12.lm <- lm(brainwt ~ bodywt+lsize, data=litters)
oldpar <-par(mfrow = c(1,2))
bx <- mice12.lm$coef[2]; bz <- mice12.lm$coef[3]
res <- residuals(mice12.lm)
plot(litters$bodywt, bx*litters$bodywt+res, xlab="Body weight",
ylab="Component + Residual")
panel.smooth(litters$bodywt, bx*litters$bodywt+res) # Overlay
plot(litters$lsize, bz*litters$lsize+res, xlab="Litter size",
ylab="Component + Residual")
panel.smooth(litters$lsize, bz*litters$lsize+res)
par(oldpar)