bomsoi | R Documentation |
Southern Oscillation Index Data
Description
The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 1900-2005, are given. Australia's annual mean rainfall is an area-weighted average of the total annual precipitation at approximately 370 rainfall stations around the country.
Usage
bomsoi
Format
This data frame contains the following columns:
- Year
a numeric vector
- Jan
average January SOI values for each year
- Feb
average February SOI values for each year
- Mar
average March SOI values for each year
- Apr
average April SOI values for each year
- May
average May SOI values for each year
- Jun
average June SOI values for each year
- Jul
average July SOI values for each year
- Aug
average August SOI values for each year
- Sep
average September SOI values for each year
- Oct
average October SOI values for each year
- Nov
average November SOI values for each year
- Dec
average December SOI values for each year
- SOI
a numeric vector consisting of average annual SOI values
- avrain
a numeric vector consisting of a weighted average annual rainfall at a large number of Australian sites
- NTrain
Northern Territory rain
- northRain
north rain
- seRain
southeast rain
- eastRain
east rain
- southRain
south rain
- swRain
southwest rain
Source
Australian Bureau of Meteorology web pages:
http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml
References
Nicholls, N., Lavery, B., Frederiksen, C.\ and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino – southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 3357-3360.
Examples
plot(ts(bomsoi[, 15:14], start=1900),
panel=function(y,...)panel.smooth(1900:2005, y,...))
pause()
# Check for skewness by comparing the normal probability plots for
# different a, e.g.
par(mfrow = c(2,3))
for (a in c(50, 100, 150, 200, 250, 300))
qqnorm(log(bomsoi[, "avrain"] - a))
# a = 250 leads to a nearly linear plot
pause()
par(mfrow = c(1,1))
plot(bomsoi$SOI, log(bomsoi$avrain - 250), xlab = "SOI",
ylab = "log(avrain = 250)")
lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain - 250))$y, lwd=2)
# NB: separate lowess fits against time
lines(lowess(bomsoi$SOI, log(bomsoi$avrain - 250)))
pause()
xbomsoi <-
with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33))
xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y
xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y
rainpos <- pretty(bomsoi$avrain, 5)
with(xbomsoi,
{plot(cuberootRain ~ SOI, xlab = "SOI",
ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
## Relative changes in the two trend curves
lines(lowess(cuberootRain ~ SOI))
lines(lowess(trendRain ~ trendSOI), lwd=2)
})
pause()
xbomsoi$detrendRain <-
with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
xbomsoi$detrendSOI <-
with(xbomsoi, SOI - trendSOI + mean(trendSOI))
oldpar <- par(mfrow=c(1,2), pty="s")
plot(cuberootRain ~ SOI, data = xbomsoi,
ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(cuberootRain ~ SOI)))
plot(detrendRain ~ detrendSOI, data = xbomsoi,
xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI)))
pause()
par(oldpar)
attach(xbomsoi)
xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0))
# ordinary regression model
xbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI,
order=c(0,0,12))
# regression with MA(12) errors -- all 12 MA parameters are estimated
xbomsoi.ma12
pause()
xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI,
seasonal=list(order=c(0,0,1), period=12))
# regression with seasonal MA(1) (lag 12) errors -- only 1 MA parameter
# is estimated
xbomsoi.ma12s
pause()
xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
xreg = detrendSOI, fixed = c(0, 0, 0,
NA, rep(0, 4), NA, 0, NA, NA, NA, NA),
transform.pars=FALSE)
# error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10
# NA's are used to designate coefficients that still need to be estimated
# transform.pars is set to FALSE, so that MA coefficients are not
# transformed (see help(arima))
detach(xbomsoi)
pause()
Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
type="Ljung-Box", lag=20)
pause()
attach(xbomsoi)
xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
xreg = poly(detrendSOI,2), fixed = c(0,
0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)),
transform.pars=FALSE)
xbomsoi2.maSel
qqnorm(resid(xbomsoi.maSel, type="normalized"))
detach(xbomsoi)