CigarettesB | R Documentation |
Cigarette Consumption Data
Description
Cross-section data on cigarette consumption for 46 US States, for the year 1992.
Usage
data("CigarettesB")
Format
A data frame containing 46 observations on 3 variables.
- packs
Logarithm of cigarette consumption (in packs) per person of smoking age (> 16 years).
- price
Logarithm of real price of cigarette in each state.
- income
Logarithm of real disposable income (per capita) in each state.
Source
The data are from Baltagi (2002).
References
Baltagi, B.H. (2002). Econometrics, 3rd ed. Berlin, Springer.
Baltagi, B.H. and Levin, D. (1992). Cigarette Taxation: Raising Revenues and Reducing Consumption. Structural Change and Economic Dynamics, 3, 321–335.
See Also
Baltagi2002
, CigarettesSW
Examples
data("CigarettesB")
## Baltagi (2002)
## Table 3.3
cig_lm <- lm(packs ~ price, data = CigarettesB)
summary(cig_lm)
## Chapter 5: diagnostic tests (p. 111-115)
cig_lm2 <- lm(packs ~ price + income, data = CigarettesB)
summary(cig_lm2)
## Glejser tests (p. 112)
ares <- abs(residuals(cig_lm2))
summary(lm(ares ~ income, data = CigarettesB))
summary(lm(ares ~ I(1/income), data = CigarettesB))
summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB))
summary(lm(ares ~ sqrt(income), data = CigarettesB))
## Goldfeld-Quandt test (p. 112)
gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less")
## NOTE: Baltagi computes the test statistic as mss1/mss2,
## i.e., tries to find decreasing variances. gqtest() always uses
## mss2/mss1 and has an "alternative" argument.
## Spearman rank correlation test (p. 113)
cor.test(~ ares + income, data = CigarettesB, method = "spearman")
## Breusch-Pagan test (p. 113)
bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE)
## White test (Table 5.1, p. 113)
bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB)
## White HC standard errors (Table 5.2, p. 114)
coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1"))
## Jarque-Bera test (Figure 5.2, p. 115)
hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray")
library("tseries")
jarque.bera.test(residuals(cig_lm2))
## Tables 8.1 and 8.2
influence.measures(cig_lm2)
## More examples can be found in:
## help("Baltagi2002")